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Biomarkers for Parkinson’s disease (PD) diagnosis, prognostication and clinical trial 
cohort selection are an urgent need. While many promising markers have been 
discovered through the National Institute of Neurological Disorders and Stroke 
Parkinson’s Disease Biomarker Program (PDBP) and other mechanisms, no single PD 
marker or set of markers are ready for clinical use. Here we discuss the current state of 
biomarker discovery for platforms relevant to PDBP. We discuss the role of the PDBP 
in PD biomarker identification and present guidelines to facilitate their development. 
These guidelines include: harmonizing procedures for biofluid acquisition and 
clinical assessments, replication of the most promising biomarkers, support and 
encouragement of publications that report negative findings, longitudinal follow-up 
of current cohorts including the PDBP, testing of wearable technologies to capture 
readouts between study visits and development of recently diagnosed (de novo) 
cohorts to foster identification of the earliest markers of disease onset.
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Potential role of biomarkers in 
the diagnosis & management of 
Parkinson’s disease
There has been significant progress in our 
understanding of the biology of Parkinson’s 
disease (PD); however, current therapies treat 
only the symptoms of PD. Identification of 
neuroprotective agents to slow or halt dis-
ease progression is, therefore, an urgent need. 
Several Phase III studies testing putative neu-
roprotective agents in PD failed for a num-
ber of reasons [1,2]. First, due to the indolent 
nature of PD, the typical time from diagnosis 
to death is 6.9–14.3 years [3] and the vary-
ing rate of decline makes it difficult to design 
neuroprotective trials. Second, PD is hetero-
geneous and includes a small but significant 
fraction of PD mimics (parkinsonism). The 
fact that PD is itself a syndrome composed 
of a variety of overlapping disorders with 
variable natural histories further complicates 

heterogeneity. Moreover, co-morbid condi-
tions likely influence disease expression [4]. 
Finally, evaluations based on commonly 
used clinical research instruments (limited 
by inter-rater reliability and practice effects) 
are affected by both symptomatic treatments 
and co-morbid conditions. The most widely 
used clinical instrument in PD neuroprotec-
tion trials is the Movement Disorder Society-
Unified Parkinson’s Disease Rating Scale, yet 
this scale is constructed largely to measure 
dopaminergic therapy responsive features of 
PD, not the treatment resistant aspects that 
are characteristic of advanced PD [5]. As a 
result, changes in dopaminergic treatment 
during a neuroprotection trial could con-
found the assessment of disease progression 
(as measured by this scale) or have to be pro-
hibited by the protocol, thus greatly limiting 
subjects who can participate in the study. 
There are no specific biomarkers for any stage 
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in PD and the identification of specific PD biomarkers 
would be a major advance in implementing effective 
clinical trials for possible neuroprotective treatments. 
Biomarkers would allow better subject selection and 
stratification, evaluation of disease activity and target 
engagement, leading to improved aims in clinical tri-
als. It is unlikely that any single biomarker will satisfy 
all needs for higher quality PD neuroprotection trials. 
Therefore, a plurality of approaches aimed at realiz-
ing several different and complementary types of PD 
b iomarkers is needed.

A number of efforts are underway toward identifica-
tion and validation of PD biomarkers (Table 1). One 
such effort is the National Institute of Neurological 
Disorders and Stroke (NINDS) Parkinson’s Disease 
Biomarkers Program (PDBP). Prior to establishing 
the PDBP, NINDS staff conducted a workshop in 
2012 surveying the biomarkers landscape and relevant 
NINDS programs. These discussions included stake-
holders and experts in the field, as well as others from 
the scientific community, in order to obtain broad 
input regarding the appropriate next steps [6]. The US 
FDA perspective on biomarkers validation was used to 
consider progress and to identify possible gaps, as well 
as to calibrate the activities of the program with the 
long-term goal of moving biomarkers toward use in 
PD neuroprotective and other PD clinical trials. As a 
result of this process, it was determined that the PDBP 
would encompass creation of three broad compo-
nents needed for biomarkers research: a data manage-
ment resource (DMR) to support standardization and 
data sharing; well-characterized longitudinal clinical 
cohorts, with detailed clinical data collected and bio-
specimens banked; and laboratory and clinically-based 
biomarker discovery [7]. PDBP was also designed to 
fill the gap between two existing PD biomarkers pro-
grams established by the Michael J Fox Foundation: 
the Parkinson’s Progression Marker Initiative (PPMI), 
whose goal is validation of biomarker discovery proj-
ects [8] and BioFIND, an observational cross-sectional 
study cohort [9]. The latter does not include hypoth-
esis-based or discovery research. PDBP fills the gap 
between these two efforts and complements both by: 
creating a longitudinal data and sample resource that 
includes a broader clinical spectrum of PD and parkin-
sonism than other collections; funding a range of bio-
markers discovery projects; and creating a resource for 
replication of early discoveries. Unlike PPMI, PDBP is 
agnostic regarding results of dopamine transporter sin-
gle-photon emission-computed tomography (SPECT) 
imaging, presenting phenotype (tremor predominant 
or postural instability and gait difficulty [PIGD]) or 
disease duration, or stage. Most PD subjects included 
are taking dopaminergic drugs that are documented 

both with respect to drug identity and dose at the time 
of each study visit. This information enables calcula-
tion of the levodopa equivalent daily dose for each PD 
subject at each visit, which can be used to correlate 
with any putative biomarkers discovered as part of the 
project. The data collected in PDBP includes a stan-
dard set of assessments that would be collected on a 
typical subject in a future clinical trial [10]. PDBP also 
complements another effort, the Harvard Biomarker 
Study (HBS), a longitudinal case-control study which 
developed a biobank of specimens aimed at biomarker 
discovery.

Biomarkers can be categorized in terms of context 
of use (defined in Table 2) [11]. The PDBP has projects 
addressing many purposes, including susceptibility/
risk (‘trait’) biomarkers, diagnostic (‘state’) biomark-
ers, disease progression (‘rate’) biomarkers, prognostic 
biomarkers and predictive biomarkers (see Table 2). 
Monitoring, pharmacodynamic and safety biomark-
ers (also defined in Table 2) are used in relationship 
to a given therapeutic; these biomarker types are usu-
ally advanced in concert with the development of neu-
roprotective and symptomatic treatment agents and, 
therefore, are not within the scope of PDBP.

Another useful categorization scheme relates to 
the stage of biomarker development. In this scheme, 
biomarker efforts can be categorized as being in the 
d iscovery, replication/validation or qualification phase.

Discovery
Discovery in biomarkers research generates new 
knowledge, drives innovation and provides the input 
for biomarkers pipeline development. Methods of dis-
covery may include physiological/clinical assessments, 
genomic/proteomic/metabolomic/RNA methodolo-
gies and imaging approaches. Some of these approaches 
derive directly from basic research (Figure 1). Applica-
tion of basic research in biomarker development capi-
talizes on the strengths of the NIH process. This is 
consequently an appropriate space for NINDS to play 
a role in filling the gaps in PD biomarkers research. 
NINDS established the PDBP based on the concept 
that biomarkers discovery and replication are needed 
prior to validation and application in clinical trials.

Replication & validation
Replication and validation are essential components of 
any scientific process, as biomarkers will only be use-
ful if generalizable and reliable. However, validity and 
generalizability criteria are not well delineated in the 
biomarker field. Replication is not a simple or straight-
forward designation. Replication can mean consistent 
results obtained in the same laboratory with the same 
samples; results replicated in the same laboratory with 
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different samples; or results replicated in a different 
setting with the same samples. In addition to replica-
tion, analytic and clinical validation are necessary for 
moving any biomarker forward. Analytic validation 
is generally applied to studies that establish that the 
performance characteristics of the test are acceptable 
in terms of its sensitivity, specificity, accuracy and pre-
cision, as applicable [13]. Clinical validation is defined 
as establishing that the candidate biomarker accept-
ably identifies, measures or predicts the clinical, bio-
logical, physical or state of interest [13]. Thus to meet 
the requirements for replicating and validating robust 
biomarkers, the PDBP is a milestone-driven program, 
in which go/no-go decision points are specified for all 
discovery and replication projects. In addition, stan-
dard blood-based laboratory tests are performed on all 
PDBP participants and lab results are captured in the 
PDBP DMR. Quality control of plasma, serum and 
cerebrospinal fluid (CSF) by the NINDS BioSEND 
biorepository includes hemoglobin assessment, while 
the RNA Integrity Number, 260/280 and 260/230 
ratios are used to determine RNA and DNA quality, 
respectively. NIH also sponsored a funding announce-
ment that supported the use of PDBP biosamples for 
discovery or replication of promising PD biomarkers 

defined by specificity, selectivity, accuracy and preci-
sion criteria. Study design required the identification 
of independent discovery and replication cohorts and 
the use of pooled samples for standardization across 
l aboratories and platforms.

Qualification
Qualification is a term that applies largely to a regula-
tory process and designation. For instance, consider-
ations for biomarker qualification at the FDA include: 
the context of use for drug development, the relation-
ship of the biomarker to clinical outcomes and treat-
ment, assay considerations (including variability), 
biological rationale for use, strength of association of 
the biomarker with the clinical state, reproducibility 
of data and strength of evidence. Note that qualifica-
tion is not required for biomarker use in a clinical trial 
prior to submitting biomarker trial data to the FDA for 
review [14].

PDBP achievements
The overall philosophy for establishing the NINDS 
PDBP was to foster scientific breakthroughs and prog-
ress, as well as resources, and to facilitate integration 
of the existing and future projects into a dovetailed 

Table 2. Definitions of biomarker types.

Type of biomarker Definition based on use Example PD-specific examples

Susceptibility/risk 
(trait biomarker)

Indicates the potential for 
developing a condition in an 
unaffected individual

BRCA1/2 mutations identify 
individuals with a predisposition 
to developing breast cancer

Nonmotor symptoms which occur 
before motor signs are evident

Diagnostic 
(state biomarker)

Identify individuals with the 
disease or condition of interest or 
to define a subset of the disease

Sweat chloride levels used to 
confirm cystic fibrosis

Tools that differentiate PD from 
parkinsonism

Prognostic Identify likelihood of a clinical 
event, disease recurrence or 
progression

Chromosome 17p deletions assess 
likelihood of death in chronic 
lymphocytic leukemia

Cognitive dysfunction in PD 
higher among individuals who 
had amyloid and tau pathology

Predictive Identify individuals more likely 
to experience a favorable or 
unfavorable effect from a specific 
intervention or exposure

Potassium channel mutations 
evaluate children with diabetes 
to determine benefit from 
sulfonylurea treatment

Biomarkers to predict the 
risk of dyskinesias due to PD 
symptomatic treatment

Monitoring 
(rate biomarker)

Measured serially and used to 
detect a change in the degree 
or extent of disease; may also be 
used to indicate toxicity/assess 
safety

International normalized ratio 
used for monitoring patients on 
warfarin

No current examples in PD 
treatment

Pharmacodynamic/
response

Demonstrate that a biological 
response has occurred in 
an individual receiving an 
intervention or exposure

HIV viral load used when 
evaluating response to 
antiretroviral treatment

No current examples in PD 
treatment

Safety Indicate the presence or 
extent of toxicity related to an 
intervention or exposure

Serum creatinine monitors 
for nephrotoxicity of certain 
treatments

Monitoring effectiveness and 
side effects of levodopa
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Figure 1. The typical biomarker development pipeline. The typical pipeline includes significant basic research in 
association with well-characterized clinical cohorts. Any biomarkers discovered and replicated, must be validated 
and shown to qualify as biomarkers. 
Reproduced from [12].

Novel molecular targets

Novel tools and assays,
and approaches adapted

from other fields

Clinical tools
as biomarkers

Computational and analytic
methods, including integration

of various approaches

Novel imaging Large-scale omics data

Validation Qualification

Basic research

Discovery and replication
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sequence from discovery to qualification for applica-
tion of PD biomarkers in Phase II or III clinical trials. 
The PDBP concrete goals established in 2012, based on 
stakeholder and outside expert input, as noted above, 
were data management, clinical cohorts with stan-
dardized biospecimen collection and laboratory-based 
d iscovery science [7].

Data management
The PDBP DMR is the central hub for coordinating 
data-related activities integral to PDBP and includes 
seven modules that enable data entry, quality control, 
data access, data query, biosample access and account 
management. The DMR contains a common data dic-
tionary used across multiple studies and built upon 
NINDS common and PD-disease specific data ele-
ments [15]. Several unique features associated with vari-
ous modules of the DMR include ProFoRMS, use of a 
Global Unique Identifier (GUID) and the Query tool. 
The ProFoRMS module is an electronic data entry sys-
tem, which also enables patient scheduling and qual-
ity assessment of data prior to uploading to the data 
repository. The GUID, is a software application that 
generates a unique identifier for each study participant. 
This software application uses a subject’s personal 
identifiable information to create a one-way hash code 
made up of a prefix, an alphanumeric sequence and 
a check character. The DMR database contains only 
deidentified data, so the GUID is never directly asso-
ciated with the personal identifiable information. The 

GUID enables linking of all data (genetic, imaging, 
clinical and biomarker) for an individual subject both 
within and across studies, and it is the identifier used 
to join subject level data in the Query tool. The Query 
tool enables a researcher to select data based on either 
a form, a data element, or through the use of a defined 
query. In the Query tool, selected data can be joined 
(3-way), processed at an individual level and further 
filtered based on data elements and permissible value 
ranges. Data can be downloaded either from data gen-
erated from queries or directly from studies listed in 
the data repository. To date, there are have been over 
4.7 million records and 400,000 datasets accessed 
through the DMR query tool. These data have con-
tributed to biomarker discovery [16–18] and disease 
m odeling efforts [19].

Clinical cohort & biospecimen collection
A total of 1547 individuals have been enrolled in 
the PDBP studies to date (Table 3). Out of this, 825 
individuals have PD, 44 individuals have Progres-
sive Supranuclear Palsy (PSP), 28 individuals are 
diagnosed with Multiple System Atrophy (MSA), 
36 individuals have atypical PD, 23 individuals 
with Essential Tremor and 525 are control subjects. 
Twenty-five percent of PDBP participants have a fam-
ily history of PD and 184 participants were diagnosed 
with PD within 1 year of PDBP study enrollment. 
Clinical assessment tools overlap with those used in 
subject ascertainment in PPMI [8] and BioFIND [9]. 



456 Biomark. Med. (2017) 11(6) future science group

Perspective    Gwinn, David, Swanson-Fischer et al.
Ta

b
le

 3
. P

ar
ki

n
so

n
’s

 D
is

ea
se

 B
io

m
ar

ke
r 

Pr
o

g
ra

m
 p

ro
je

ct
 c

at
eg

o
ri

za
ti

o
n

 s
u

m
m

ar
y.

In
ve

st
ig

at
o

r
B

io
m

ar
ke

rs
 p

u
rp

o
se

Pr
o

je
ct

 t
it

le
Sc

ie
n

ti
fi

c 
fi

el
d

Su
b

fi
el

d
 (

fo
cu

s)
R

es
ea

rc
h

 f
u

n
d

in
g

 a
n

n
o

u
n

ce
m

en
t

A
lb

in
D

ia
g

n
o

st
ic

Se
ro

to
n

in
 a

n
d

 a
m

yl
o

id
o

p
at

h
y

Im
ag

in
g

PE
T 

im
ag

in
g

, s
er

o
to

n
er

g
ic

 
in

n
ve

ra
ti

ve
 a

n
d

 a
-b

et
a 

d
ep

o
si

ti
o

n
, P

D
 v

er
su

s 
ag

in
g

R
es

ea
rc

h
 p

ro
je

ct
 g

ra
n

t 
(P

ar
en

t 
R

01
)†

A
lc

al
ay

Pr
o

g
n

o
st

ic
Th

e 
ro

le
 o

f 
g

lu
co

ce
re

b
ro

si
d

as
e 

in
 

Pa
rk

in
so

n
’s

 d
is

ea
se

G
en

o
m

e 
an

d
 

tr
an

sc
ri

p
to

m
e

R
is

k 
as

se
ss

m
en

t 
PD

 in
 G

B
A

 
m

u
ta

ti
o

n
 c

ar
ri

er
s

In
d

ep
en

d
en

t 
Sc

ie
n

ti
st

 A
w

ar
d

 
(P

ar
en

t 
K

02
)†

A
sc

h
er

io
Su

sc
ep

ti
b

ili
ty

/r
is

k
M

et
ab

o
lo

m
ic

s 
an

d
 r

is
k 

o
f 

Pa
rk

in
so

n
’s

 d
is

ea
se

Pr
o

te
o

m
e 

an
d

 
m

et
ab

o
lo

m
e

Li
fe

st
yl

e 
an

d
 r

is
k 

fo
r 

PD
R

es
ea

rc
h

 p
ro

je
ct

 g
ra

n
t 

(P
ar

en
t 

R
01

)†

B
o

w
m

an
Pr

o
g

n
o

st
ic

A
n

al
yt

ic
 m

et
h

o
d

s 
fo

r 
d

et
er

m
in

in
g

 
m

u
lt

im
o

d
al

 b
io

m
ar

ke
rs

 f
o

r 
Pa

rk
in

so
n

’s
 d

is
ea

se

M
u

lt
im

o
d

al
 

(c
lin

ic
al

, 
im

ag
in

g
)

St
at

is
ic

al
 t

ec
h

n
iq

u
es

 t
o

 
d

if
fe

re
n

ti
at

e 
PD

 f
ro

m
 

co
n

tr
o

ls
, A

D

E
xp

lo
ra

to
ry

 la
b

o
ra

to
ry

 a
n

d
 

an
al

ys
is

 p
ro

je
ct

s 
in

 P
ar

ki
n

so
n

’s
 

d
is

ea
se

 b
io

m
ar

ke
rs

 (
U

18
)

C
h

en
-P

lo
tk

in
Pr

o
g

n
o

st
ic

, 
su

sc
ep

ti
b

ili
ty

/r
is

k
U

n
b

ia
se

d
 a

p
p

ro
ac

h
es

 t
o

 n
o

ve
l 

b
io

m
ar

ke
r 

d
is

co
ve

ry
 in

 P
ar

ki
n

so
n

’s
 

d
is

ea
se

Pr
o

te
o

m
e 

an
d

 
m

et
ab

o
lo

m
e

Pl
as

m
a

-b
as

ed
 m

ar
ke

rs
 f

o
r 

co
g

n
it

iv
e 

p
er

fo
rm

an
ce

/r
is

k
St

u
d

ie
s 

in
 P

ar
ki

n
so

n
’s

 d
is

ea
se

 
b

io
m

ar
ke

rs
 d

is
co

ve
ry

 (
U

01
)

D
aw

so
n

; 
R

o
se

n
th

al
R

es
o

u
rc

e 
cr

ea
ti

o
n

, s
u

b
je

ct
 

ch
ar

ac
te

ri
za

ti
o

n

Jo
h

n
s 

H
o

p
ki

n
s 

m
ed

ic
in

e 
b

io
m

ar
ke

r 
d

is
co

ve
ry

 in
 P

ar
ki

n
so

n
’s

 d
is

ea
se

C
lin

ic
al

C
o

h
o

rt
 a

ss
es

sm
en

t 
an

d
 

co
lle

ct
io

n
St

u
d

ie
s 

in
 P

ar
ki

n
so

n
’s

 d
is

ea
se

 
b

io
m

ar
ke

rs
 d

is
co

ve
ry

 (
U

01
)

D
ew

ey
R

es
o

u
rc

e 
cr

ea
ti

o
n

, s
u

b
je

ct
 

ch
ar

ac
te

ri
za

ti
o

n

D
ia

g
n

o
st

ic
 a

n
d

 p
ro

g
n

o
st

ic
 

b
io

m
ar

ke
rs

 f
o

r 
Pa

rk
in

so
n

’s
 d

is
ea

se
C

lin
ic

al
C

o
h

o
rt

 a
ss

es
sm

en
t 

an
d

 
co

lle
ct

io
n

, g
ai

t 
an

d
 b

al
an

ce
 a

s 
ra

te
 b

io
m

ar
ke

rs

St
u

d
ie

s 
in

 P
ar

ki
n

so
n

’s
 d

is
ea

se
 

b
io

m
ar

ke
rs

 d
is

co
ve

ry
 (

U
01

)

G
er

m
an

D
ia

g
n

o
st

ic
D

ia
g

n
o

st
ic

 a
n

d
 p

ro
g

n
o

st
ic

 
b

io
m

ar
ke

rs
 f

o
r 

Pa
rk

in
so

n
’s

 d
is

ea
se

Pr
o

te
o

m
e 

an
d

 
M

et
ab

o
lo

m
e

Pe
p

to
id

 id
en

ti
fi

ca
ti

o
n

 t
o

 
d

if
fe

re
n

ti
at

e 
PD

 v
s 

A
D

, P
D

 v
s 

co
n

tr
o

ls

St
u

d
ie

s 
in

 P
ar

ki
n

so
n

’s
 d

is
ea

se
 

b
io

m
ar

ke
rs

 d
is

co
ve

ry
 (

U
01

)

H
u

an
g

D
ia

g
n

o
st

ic
, 

p
ro

g
n

o
st

ic
, 

p
ro

g
re

ss
io

n

M
u

lt
im

o
d

al
 M

R
I m

ar
ke

rs
 o

f 
n

ig
ro

st
ri

at
al

 p
at

h
o

lo
g

y 
in

 
Pa

rk
in

so
n

’s
 d

is
ea

se

Im
ag

in
g

D
TI

 a
n

d
 M

R
I m

ea
su

re
s 

o
f 

ir
o

n
-

re
la

te
d

 p
ro

te
in

s;
 P

D
 v

s 
PD

is
m

St
u

d
ie

s 
in

 P
ar

ki
n

so
n

’s
 d

is
ea

se
 

b
io

m
ar

ke
rs

 d
is

co
ve

ry
 (

U
01

)

Pe
ty

u
k

D
ia

g
n

o
st

ic
D

ev
el

o
p

m
en

t 
o

f 
Le

w
y 

b
o

d
ie

s 
b

io
fl

u
id

 s
ig

n
at

u
re

s 
b

y 
ta

rg
et

ed
 

p
ro

te
o

m
ic

s

Pr
o

te
o

m
e 

an
d

 
m

et
ab

o
lo

m
e

Id
en

ti
fy

 p
ro

te
in

s 
in

 
p

at
h

o
lo

g
ic

al
ly

 c
o

n
fi

rm
ed

 L
B

 
ca

se
s;

 v
al

id
at

e 
in

 P
D

/c
o

n
tr

o
l 

b
lo

o
d

-b
as

ed
 s

am
p

le

E
xp

lo
ra

to
ry

 la
b

o
ra

to
ry

 a
n

d
 

an
al

ys
is

 p
ro

je
ct

s 
in

 P
ar

ki
n

so
n

’s
 

d
is

ea
se

 b
io

m
ar

ke
rs

 (
U

18
)

Po
ta

sh
ki

n
D

ia
g

n
o

st
ic

B
lo

o
d

 R
N

A
 b

io
m

ar
ke

rs
 o

f 
Pa

rk
in

so
n

s 
d

is
ea

se
 a

n
d

 p
ro

g
re

ss
iv

e 
su

p
ra

n
u

cl
ea

r 
p

al
sy

G
en

o
m

e 
an

d
 

tr
an

sc
ri

p
to

m
e

Id
en

ti
fy

 a
n

 R
N

A
 s

ig
n

at
u

re
 

th
at

 d
if

fe
re

n
ti

at
es

 P
D

 f
ro

m
 

P
SP

Pa
rk

in
so

n
’s

 D
is

ea
se

 B
io

m
ar

ke
r 

Pr
o

g
ra

m
 d

is
co

ve
ry

 p
ro

je
ct

s 
(U

01
)

Sa
u

n
d

er
s–

Pu
llm

an
D

ia
g

n
o

st
ic

, 
p

ro
g

re
ss

io
n

Ev
al

u
at

io
n

 o
f 

g
lu

co
ce

re
b

ro
si

d
as

e 
p

at
h

w
ay

 b
io

m
ar

ke
rs

 in
 P

ar
ki

n
so

n
 

d
is

ea
se

Pr
o

te
o

m
e 

an
d

 
m

et
ab

o
lo

m
e

Ev
al

u
at

e 
G

B
A

 p
at

h
w

ay
 

m
ar

ke
rs

 in
 G

B
A

-P
D

, I
PD

, 
co

n
tr

o
ls

 a
n

d
 t

h
ei

r 
cl

in
ic

al
 

co
rr

el
at

es

Pa
rk

in
so

n
’s

 D
is

ea
se

 B
io

m
ar

ke
r 

Pr
o

g
ra

m
 d

is
co

ve
ry

 p
ro

je
ct

s 
(U

01
)

C
o
m
m
en
t:
 t
h
e 
la
st
 c
o
lu
m
n 
ill
u
st
ra
te
s 
th
at
 m
aj
o
ri
ty
 o
f 
th
e 
p
ro
je
ct
s 
in
 t
h
e 
Pa
rk
in
so
n’
s 
d
is
ea
se
 b
io
m
ar
ke
rs
 d
is
co
ve
ry
 a
re
 b
ec
au
se
 o
f 
in
it
ia
ti
ve
s 
co
o
rd
in
at
ed
 b
y 
p
ro
g
ra
m
 o
ffi
ce
rs
. 

† U
ns
o
lic
it
ed
 p
ro
je
ct
s.
 

A
D
: A
lz
h
ei
m
er
’s
 d
is
ea
se
; E
T:
 E
ss
en
ti
al
 t
re
m
o
r;
 G
B
A
: G
lu
co
ce
re
b
ro
si
d
as
e;
 IP
D
: I
d
io
p
at
hi
c 
Pa
rk
in
so
n’
s 
d
is
ea
se
; P
D
: P
ar
ki
ns
o
n’
s 
d
is
ea
se
; P
D
is
m
: N
o
n
-P
D
 P
ar
ki
ns
o
ni
sm
; P
ET
: P
o
si
tr
o
n 
em
is
si
o
n 
to
m
o
g
ra
p
hy
; 

PS
P:
 P
ro
g
re
ss
iv
e 
su
p
ra
nu
cl
ea
r 
p
al
sy
.



www.futuremedicine.com 457future science group

Parkinson’s disease biomarkers: perspective from the NINDS Parkinson’s Disease Biomarkers Program    Perspective
Ta

b
le

 3
. P

ar
ki

n
so

n
’s

 D
is

ea
se

 B
io

m
ar

ke
r 

Pr
o

g
ra

m
 p

ro
je

ct
 c

at
eg

o
ri

za
ti

o
n

 s
u

m
m

ar
y 

(c
o

n
t.

).

In
ve

st
ig

at
o

r
B

io
m

ar
ke

rs
 p

u
rp

o
se

Pr
o

je
ct

 t
it

le
Sc

ie
n

ti
fi

c 
fi

el
d

Su
b

fi
el

d
 (

fo
cu

s)
R

es
ea

rc
h

 f
u

n
d

in
g

 a
n

n
o

u
n

ce
m

en
t

Sc
h

er
ze

r
D

ia
g

n
o

st
ic

B
io

m
ar

ke
rs

 f
o

r 
ea

rl
y 

in
te

rv
en

ti
o

n
 

in
 P

ar
ki

n
so

n
 d

is
ea

se
G

en
o

m
e 

an
d

 
tr

an
sc

ri
p

to
m

e
R

eg
u

la
to

ry
 R

N
A

 s
tu

d
ie

s 
o

f 
PD

 p
at

h
o

g
en

es
is

 
(n

eu
ro

p
at

h
o

lo
g

y)
, b

lo
o

d
 a

n
d

 
sp

in
al

 fl
u

id
 o

f 
PD

 c
as

es

St
u

d
ie

s 
in

 P
ar

ki
n

so
n

’s
 d

is
ea

se
 

b
io

m
ar

ke
rs

 d
is

co
ve

ry
 (

U
01

)

Sc
h

er
ze

r
Pr

o
g

n
o

st
ic

Pa
rk

in
so

n
 d

is
ea

se
: p

re
d

ic
ti

n
g

 t
h

e 
fu

tu
re

G
en

o
m

e 
an

d
 

tr
an

sc
ri

p
to

m
e

E
xo

m
e 

se
q

u
en

ci
n

g
 t

o
 

an
al

yz
e 

va
ri

an
ts

 t
h

at
 d

is
ru

p
t 

su
sc

ep
ti

b
ili

ty
 a

n
d

 f
am

ili
al

 P
D

 
g

en
es

Pa
rk

in
so

n
’s

 D
is

ea
se

 B
io

m
ar

ke
r 

Pr
o

g
ra

m
 d

is
co

ve
ry

 p
ro

je
ct

s 
(U

01
)

V
ai

lla
n

co
u

rt
D

ia
g

n
o

st
ic

, 
p

ro
g

n
o

st
ic

N
o

n
in

va
si

ve
 m

ar
ke

rs
 o

f 
n

eu
ro

g
en

er
at

io
n

 in
 m

o
ve

m
en

t 
d

is
o

rd
er

s

Im
ag

in
g

D
TI

 t
o

 d
if

fe
re

n
ti

at
e 

PD
 f

ro
m

 
PD

is
m

, E
T 

an
d

 c
o

n
tr

o
ls

 a
n

d
 

m
ea

su
re

 p
ro

g
re

ss
io

n

B
io

m
ar

ke
rs

 d
is

co
ve

ry
 in

 
Pa

rk
in

so
n

is
m

 (
U

01
)

V
ai

lla
n

co
u

rt
; 

C
o

rc
o

s
D

ia
g

n
o

st
ic

, 
p

ro
g

n
o

st
ic

N
eu

ro
im

ag
in

g
 b

io
m

ar
ke

rs
 in

 
Pa

rk
in

so
n

is
m

: d
if

fe
re

n
ti

at
in

g
 

su
b

ty
p

es
 a

n
d

 t
ra

ck
in

g
 d

is
ea

se
 

p
ro

g
re

ss
io

n

Im
ag

in
g

U
si

n
g

 f
re

e
-w

at
er

 a
n

d
 t

as
k-

fM
R

I t
o

 c
o

m
p

ar
e 

PD
, P

D
is

m
 

an
d

 c
o

n
tr

o
ls

E
xc

lu
d

e 
th

is
? 

Pl
ea

se
 s

ee
 c

o
m

m
en

t

W
al

t
D

ia
g

n
o

st
ic

D
et

ec
ti

o
n

 o
f 

p
o

st
-t

ra
n

sl
at

io
n

al
ly

 
m

o
d

ifi
ed

 p
ro

te
in

s 
as

 a
 b

io
m

ar
ke

r 
p

an
el

 f
o

r 
Pa

rk
in

so
n

’s
 d

is
ea

se

G
en

o
m

e 
an

d
 

tr
an

sc
ri

p
to

m
e

U
se

 S
iM

o
A

 a
ss

ay
s 

to
 

d
et

ec
t 

an
d

 q
u

an
ti

fy
 p

o
st

-
tr

an
sl

at
io

n
al

ly
 m

o
d

ifi
ed

 
p

ro
te

in
s,

 t
o

 c
o

m
p

ar
e 

PD
, 

PD
is

m
 a

n
d

 c
o

n
tr

o
ls

Pa
rk

in
so

n
’s

 D
is

ea
se

 B
io

m
ar

ke
r 

Pr
o

g
ra

m
 d

is
co

ve
ry

 p
ro

je
ct

s 
(U

01
)

W
es

t
Pr

o
g

n
o

st
ic

LR
R

K
2 

an
d

 o
th

er
 n

o
ve

l e
xo

so
m

e 
p

ro
te

in
s 

in
 P

ar
ki

n
so

n
s 

d
is

ea
se

Pr
o

te
o

m
e 

an
d

 
m

et
ab

o
lo

m
e

D
et

er
m

in
e 

if
 u

ri
n

ar
y 

ex
o

so
m

e 
p

ro
te

in
s 

ar
e 

as
so

ci
at

ed
 

w
it

h
 P

D
 s

u
sc

ep
ti

b
ili

ty
 a

n
d

 
p

ro
g

re
ss

io
n

E
xp

lo
ra

to
ry

 la
b

o
ra

to
ry

 a
n

d
 

an
al

ys
is

 p
ro

je
ct

s 
in

 P
ar

ki
n

so
n

’s
 

d
is

ea
se

 b
io

m
ar

ke
rs

 (
U

18
)

W
es

t
Pr

o
g

n
o

st
ic

E
xo

so
m

e 
LR

R
K

2 
in

 p
re

d
ic

ti
n

g
 

Pa
rk

in
so

n
 d

is
ea

se
 p

h
en

o
ty

p
es

Pr
o

te
o

m
e 

an
d

 
m

et
ab

o
lo

m
e

D
et

er
m

in
e 

if
 p

S(
12

92
)-

LR
R

K
2 

le
ve

ls
 c

an
 p

re
d

ic
t 

th
e 

ri
sk

 o
f 

PD
 in

 L
R

R
K

2 
ca

rr
ie

rs
, a

n
d

 if
 it

 
ca

n
 p

re
d

ic
t 

p
ro

g
re

ss
io

n
 in

 IP
D

Pa
rk

in
so

n
’s

 D
is

ea
se

 B
io

m
ar

ke
r 

Pr
o

g
ra

m
 d

is
co

ve
ry

 p
ro

je
ct

s 
(U

01
)

Zh
an

g
D

ia
g

n
o

st
ic

La
rg

e
-s

ca
le

 b
io

m
ar

ke
r 

d
is

co
ve

ry
 

an
d

 v
al

id
at

io
n

 f
o

r 
Pa

rk
in

so
n

’s
 

d
is

ea
se

Pr
o

te
o

m
e 

an
d

 
m

et
ab

o
lo

m
e

U
se

 p
ro

te
in

 a
n

d
 p

ep
ti

d
e

-
b

as
ed

 a
p

p
ro

ac
h

es
 t

o
 

d
is

co
ve

ry
, r

ep
lic

at
e 

an
d

 
va

lid
at

e 
m

ar
ke

rs
 t

o
 

d
if

fe
re

n
ti

at
e 

PD
 f

ro
m

 c
o

n
tr

o
ls

St
u

d
ie

s 
in

 P
ar

ki
n

so
n

’s
 d

is
ea

se
 

b
io

m
ar

ke
rs

 d
is

co
ve

ry
 (

U
01

)

C
o
m
m
en
t:
 t
h
e 
la
st
 c
o
lu
m
n 
ill
u
st
ra
te
s 
th
at
 m
aj
o
ri
ty
 o
f 
th
e 
p
ro
je
ct
s 
in
 t
h
e 
Pa
rk
in
so
n’
s 
d
is
ea
se
 b
io
m
ar
ke
rs
 d
is
co
ve
ry
 a
re
 b
ec
au
se
 o
f 
in
it
ia
ti
ve
s 
co
o
rd
in
at
ed
 b
y 
p
ro
g
ra
m
 o
ffi
ce
rs
. 

† U
ns
o
lic
it
ed
 p
ro
je
ct
s.
 

A
D
: A
lz
h
ei
m
er
’s
 d
is
ea
se
; E
T:
 E
ss
en
ti
al
 t
re
m
o
r;
 G
B
A
: G
lu
co
ce
re
b
ro
si
d
as
e;
 IP
D
: I
d
io
p
at
hi
c 
Pa
rk
in
so
n’
s 
d
is
ea
se
; P
D
: P
ar
ki
ns
o
n’
s 
d
is
ea
se
; P
D
is
m
: N
o
n
-P
D
 P
ar
ki
ns
o
ni
sm
; P
ET
: P
o
si
tr
o
n 
em
is
si
o
n 
to
m
o
g
ra
p
hy
; 

PS
P:
 P
ro
g
re
ss
iv
e 
su
p
ra
nu
cl
ea
r 
p
al
sy
.



458 Biomark. Med. (2017) 11(6) future science group

Perspective    Gwinn, David, Swanson-Fischer et al.

The PDBP has collected samples from 218 individu-
als with at least a 2-year follow-up to date. Biospeci-
mens obtained on all subjects include DNA, RNA, 
plasma, serum, whole blood and many subjects also 
have provided CSF. These samples were collected in a 
standardized fashion across sites, utilizing comparable 
protocols as used in the Alzheimer’s Disease Neuro-
imaging Initiative [20], PPMI [8] and BioFIND [9]. 
Samples are processed and stored at the BioSEND 
repository at Indiana University using standard oper-
ating procedures. All specimens undergo uniform 
quality assessment at BioSEND upon receipt. Biosa-
mple requests are submitted through an online appli-
cation form [21] and reviewed by the PD Biospecimen 
Resource Access Committee (BRAC) established by 
NINDS. The PD BRAC also reviews requests for bio-
samples from BioFIND, the Michael J Fox Founda-
tion LRRK2 cohort and the HBS through this online 
system, thus enabling a researcher to request samples 
from multiple cohorts in a single application process. 
Once approved, biospecimens are distributed from 
BioSEND in a systematic manner [22].

PDBP clinical data are made available via a con-
trolled process which requires the establishment of 
an account with the DMR. Requirements for account 
access include agreements to: not share the data with 
third parties; to not seek to identify any individual 
participating in the study; and acknowledge the 
PDBP in resulting publications. Once the PD BRAC 
has approved biosample access, the PDBP DMR 
Query tool enables an investigator to link clinical data 
to biosample availability through the GUID. PDBP 
biosamples selected by the investigator are processed 
through the DMR Order Manager. The DMR Order 
Manager provides a unique tool for linking bioreposi-
tory and data management functions. To date, a total 
of 24 PDBP biosample requests have been received 
and 5228 biosamples have been distributed. A total 
of 967 DNA samples have been used for genotyping 
with the NeuroX chip [19,23]. NeuroX data are avail-
able through the DMR, once a DMR account holder 
has completed the PDBP Genomic Data Use Cer-
tificate. A total of 1308 DNA samples are currently 
being used for whole genome sequencing analysis 
and data from this analysis will be available through 
the DMR in 2017. Eight hundred and thirteen DNA 
samples have been distributed for targeted sequenc-
ing of validated PD risk alleles and data will be avail-
able through the DMR in 2018. One hundred and 
thirty-eight RNA samples have been distributed for 
RNA biomarker replication and data will be available 
in the DMR in 2018. One thousand five hundred 
and thirty-one plasma samples are currently being 
analyzed for urate and vitamin D levels. This data 

will be available in the DMR in 2017. A complete list 
of PD BRAC-approved biomarker d iscovery projects 
are provided in Supplementary Table 1.

Clinical & laboratory-based discovery science
A typical biomarker ‘pipeline’ is represented in Figure 1. 
Discovery science is an essential part of the biomarkers 
pipeline. While it is represented commonly as a uni-
form enterprise in most biomarkers research discus-
sions, biomarker discovery research is complex, highly 
textured and not monolithic as often represented in 
biomarkers literature; the latter typically delves more 
deeply into clinical trial requirements and the US FDA 
qualification process. A challenge which warrants 
further evaluation is how the biomarker discovery 
approaches will interact with each other as well as with 
the other components of the biomarker qualification 
process.

Overview of promising biomarkers
The PDBP Steering Committee (consisting of PDBP 
Principal Investigators and NINDS staff), along with 
academic and industry experts, convened in August 
2016 to discuss the present landscape of PD biomark-
ers in general and to make recommendations for the 
PD biomarker field overall. The PD biomarker field 
was considered in the following categories to facili-
tate discussion: Clinical and Physiological biomark-
ers, Imaging biomarkers, Genomic and Transcrip-
tomic biomarkers and Proteomic and Metabolomic 
b iomarkers.

Clinical biomarkers
We consider a clinical biomarker to be an objectively 
measured assessment that characterizes specific traits 
of individuals with PD. Examples include gait mea-
surements, smell testing, cognition and neuropsychi-
atric assessments. Some of these candidate biomarkers 
overlap with clinical end points for other biomarker 
investigations. It is not entirely clear how to differenti-
ate a clinical biomarker per se from well-validated clini-
cal assessment tools. The reality is that several putative 
biomarkers are also clinical assessment tools. Well-
validated clinical assessments tools that are considered 
likely to be useful as biomarkers are shown in Table 4.

Clinical biomarkers may be useful to measure 
disease activity and progression. Clinical measures, 
in particular, the Unified Parkinson’s Disease Rat-
ing Scale (and the more recently updated Movement 
Disorder Society-Unified Parkinson’s Disease Rating 
Scale) have long been used as outcome measures in 
clinical trials in PD [29]. There are a number of major 
limitations to using this scale for disease modification 
research in PD including: the scale objectively mea-
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Table 4. Clinical biomarkers.

Clinical finding Assessment Potential uses Limitations Study (year) Ref.

Hyposmia UPSIT Enrichment of 
presymptomatic cohort; 
may be useful for PD risk

Not specific to PD Xiao et al. (2014) 
Nalls et al. (2015)

[24], 
 [25]

RBD RBD screening 
questionnaire

Enrichment of 
presymptomatic cohort; 
may be useful for PD risk 
score

Not specific to PD, long delay 
between RBD symptoms and 
PD symptoms. comparatively 
low sensitivity/specificity

Iranzo et al. (2006) [26]

 Polysomnogram Enrichment of 
presymptomatic cohort; 
may be useful for PD risk 
score

Not specific to PD, long delay 
between RBD symptoms and 
PD symptoms

Iranzo et al. (2006) [26]

Motor symptoms UKBB Diagnostic criteria Approximately 10% 
misdiagnosis; not progression 
marker, some criteria need 
revision†

Hughes et al. 
(1992)

[27]

 MDS diagnostic 
criteria

Updated diagnostic criteria Not progression marker Postuma et al. 
(2015)

[28]

 MDS-UPDRS III Progression, evaluation of 
change after therapeutic 
intervention

Scores vary with levodopa-
induced motor fluctuations 
and amount

Goetz et al. (2008) [29]

Cognitive MoCA Global cognitive screening; 
diagnostic for cognitive 
changes; monitoring 
progression

Minimal testing per domain; 
not specific to PD

Dalrymple-Alford 
(2010)

[30]

 SCOPA-COG Global cognitive screening; 
diagnostic for cognitive 
changes; monitoring 
progression

Minimal testing per domain Marinus et al. 
(2003)

[31]

Psychiatric 
symptomatology

HAM-A/HAM-D Global screening tool; 
diagnostic criteria for 
anxiety or depression, 
monitoring progression 
and treatment response

Npt specific to PD, numerous 
somatic questions that overlap 
with PD symptoms; time 
consuming to administer

Hamilton (1959) 
Forjaz et al. (2013) 
Hamilton (1976)

[32] 
 [33] 
 [34]

 Parkinsons 
Anxiety Scale

Specific to PD, observer 
or patient-rated scale, 
diagnostic criteria for 
anxiety

Not as widely used, not 
validated for PD anxiety 
disease progression

Leentjens et al. 
(2014)

[35]

Fatigue Epworth 
Sleepiness Scale

Global screening tool; 
diagnostic criteria for 
extreme sleepiness 
and monitor disease 
progression

Not specific to PD; does not 
refer to etiology of fatigue

Johns MW (1991) [36]

Patient-reported 
outcomes

PDQ-39 Specific to PD, widely 
used and patient self-
administered, progression 
monitor for overall quality 
of life

Difficult to determine 
index score without specific 
calculations

Jenkinson et al. 
(1997)

[37]

†List represents markers with high certainty or potentially high effect sizes developed by PDBP investigators; it does not presume to represent the entire literature.
UKBB exclusion criteria for diagnosis of PD includes a family history of PD.
HAM-A/HAM-D: Hamilton Anxiety Rating Scale/Hamilton Depression Rating Scale; MDS: Movement Disorder Society; MDS-UPDRS: Movement Disorder Society-
Unified Parkinson’s Disease Rating Scale; MoCA: Montreal Cognitive Assessment; PDQ-39: Parkinson’s Disease Questionnaire; RBD: REM behavior disorder; SCOPA-
COG: Scales for Outcomes in Parkinson’s Disease-Cognitive; UKBB UK Brain Bank; UPSIT: University of Pennsylvania Smell Inventory Test.
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sures only motor symptoms and nonmotor symptoms 
are measured only by survey of the subject; the scale 
shows progression (worsening) of PD only very slowly 
such that for a typical trial of <3 years duration, insuf-
ficient worsening is seen in the placebo control patient 
group making it impossible to detect the existence of 
a modestly disease-modifying agent; the scale depends 
on trained raters who bring subjectivity to the assess-
ment process; the scale is particularly susceptible to 
confounding by dopaminergic treatment effects. To 
partially address these limitations, the NIH NET-PD 
LS1 trial of creatine as a putative disease-modifying 
agent in PD used a new composite outcome measure 
called the global statistical test [38]. This consisted of 
several items in each of five clinically relevant domains 
(activities of daily living, cognitive function, ambu-
latory capacity, quality of life and global disability). 
Unfortunately, this study was terminated early when 
an interim analysis showed that continuing the trial 
was futile.

Convenient biomarkers may be useful in identify-
ing asymptomatic individuals at risk for developing 
PD. Hyposmia is present in up to 90% of people with 
PD and occurs commonly years prior to the onset of 
motor symptoms. It also occurs in other neurodegener-
ative disorders and thus lacks specificity [30]. The most 
commonly used test to assess smell is the University 
of Pennsylvania Smell Identification Test [39]. This test 
has also been criticized from a practical standpoint for 
possible cultural biases, the time it takes to adminis-
ter and its cost (approximately US$30/test). A recent 
positron emission tomography (PET) imaging study 
showed that odor identification is a more robust mea-
sure of forebrain cholinergic activity than odor mem-
ory/discrimination tests in PD, and odor identification 
tests would be the preferred olfactory method to screen 
for more severe cholinergic forebrain denervation in 
PD [40]. As it is lacking specificity, olfaction may be 
a more useful measure in a multimodal biomarker 
approach [19].

REM behavior disorder, when diagnosed by poly-
somnogram, is highly predictive for the development 
of a neurodegenerative synucleinopathy but lacks spec-
ificity for PD. In reviewing the criteria for prodromal 
PD, the task force assigned polysomnogram-proven 
REM behavior disorder a positive likelihood ratio of 
130 [25]. Obtaining this measure in large populations 
is very difficult, however, which is why this was omit-
ted in recent prediction models [19]. The same is true 
for constipation, which is present very frequently as a 
premotor sign in PD but lacks specificity for PD.

Impaired cognition is a major feature of advanc-
ing PD and measuring cognitive impairment may be 
a useful measure of disease progression or even trial 

end point. The Montreal Cognitive Assessment [41] 
was shown to be superior to other widely used clinical 
tools, such as the Mini-Mental State exam in that it 
lacks floor or ceiling effects [30]. Other neuropsychi-
atric tools are validated as progression measures: the 
Neuropsychiatric Inventory [42], Scales for Outcomes 
in PD-Cognition [43], the Beck Depression Scale and 
the Geriatric Depression Scale [44]. It is clear that clini-
cal measures such as smell testing and sleep disorders, 
when added to other assessments such as genetic risk 
score, can be a useful component in predicting PD 
risk [19].

New technologies raise the prospect of collecting 
large amounts of ‘real-world’ data for assessing disease 
activity. Analysis of spiral drawing on a digitizing tablet 
offers the ability to objectively measure motor control 
in the ecologically relevant task of writing and dis-
criminates early PD from controls. The use of wearable 
and smart-phone technology for monitoring treatment 
assessments has been an exciting development in PD 
research [45] and may prove useful for biomarker dis-
covery. One PDBP project utilizes the APDM Mobility 
Lab, a sensor-based gait and balance assessment tool, 
to evaluate its performance as a putative state and rate 
biomarker platform. In a study of 135 PD subjects and 
66 age-matched controls assessed at baseline, a set of 
gait and balance variables reported by this device corre-
lated with PD severity measures and successfully differ-
entiated PD subjects from controls [46]. In an ongoing 
study, longitudinal measures from this device are being 
evaluated over a period of two years in PD subjects and 
controls to determine if changes in parameters over 
time can be used as a rate biomarker for the disease.

Imaging biomarkers
Several imaging modalities are being explored as puta-
tive biomarkers in PD. Ideal biomarkers for PD should 
differentiate PD from both controls as well as other 
forms of Parkinsonism and should reflect underlying 
pathological processes. It is important that any imag-
ing biomarkers be available at most medical centers, 
impose minimal burden to patients and be available at 
a reasonable cost. Imaging markers include advances 
in diffusion MRI, iron MRI, functional MRI, other 
structural MRI techniques and developments in 
ra diotracer imaging. (Table 5 & Supplementary Table 2)

Midbrain/nigral structural abnormalities can be 
evaluated using transcranial sonography, diffusion 
tensor magnetic resonance imaging and iron sensitive 
magnetic resonance imaging [41,42]. PET and SPECT 
ligands may be more suited to evaluation of nigrostria-
tal terminal dysfunction though some recent studies 
suggest that PET imaging of the nigra may also have 
advantages for assessing disease state in PD [73].
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Table 5. Most promising imaging biomarkers.

Imaging Total n Direction Study (year) Ref.

DatScan SPECT 56 
85 
50

Decline in [123I]β-CIT striatal uptake in PD 
β -CIT binding reduced in PD & APS, normal in ET; declined 
over 1 year in PD short duration and APS, not significant in 
PD long duration and ET 
decreased [123I]β-CIT over 1 year in PD

Marek et al. (2001) 
Pirker et al. (2002) 
Winogrodzka et al. (2003)

[47] 
 [48] 
 [49]

DMRI (1722) 
37 
44 
72 
59 
28

DTI may be promising for differential diagnosis in 
parkinsonian symptoms 
Lower FA in PD in neuromelanin SN ROI, not T2 ROI 
FW values higher in PD pos SN, FW increased in PD over 1 
year 
FW values higher in ant & pos SN of PD, MSA, PSP 
Increase in nigral MD in PD 
FA reduced in SN in PD

Cochrane & Ebmeier (2013) 
Langley et al. (2016) 
Ofori et al. (2015) 
Planetta et al. (2016) 
Schwarz et al. (2013) 
Vaillancourt et al. Neurology, 
(2009)

[50] 
 [51] 
 [52] 
 [53] 
 [54] 
 [55]

MRI 140 
110

Reduced gyrification overall in PD; accelerated loss of 
gyrification in mid-stage PD 
Midbrain/putaminal vol & cerebellar gray matter 
constructed prediction model has 97.4% diagnostic accuracy 
for PD vs MSA/PSP

Sterling et al. (2016) 
Scherfler et al. (2016)

[56] 
 [57]

fMRI 42 
60 
112 
24 
80 
42 
42

Altered FC resting-state fMRI in distinguishing PD from 
controls 
PD & PSP show hypoactivity using BOLD measures 
PSC from task-based fMRI shows deterioration in motor 
cortex and putamen in PD over 1 year 
Dopaminergic modulation of resting-state connectivity 
predicted dyskinesias with spec 100% and sens 91% 
ALFF shows decreased activity in PD, deficit increases with 
H&Y stage 
Increased PSC in ET, correlates w/ 3–8 Hz force oscillations 
Reduced activation in motor control areas in MSAp and PD

Bowman et al. (2016) 
Burciu et al. (2015) 
Burciu et al. (2016) 
Herz et al. (2016) 
Luo et al. (2015) 
Neely et al. (2015) 
Planetta et al. Human Brain 
Mapping (2015)

[58] 
 [59] 
 [60] 
 [61] 
 [62] 
 [63] 
 [64]

Metabolic PET 15 
66 
47 
70

Increased activity of PDRP over time; increased expression 
of PDCP over time; increased putamen metabolic activity; 
decreased precuneus metabolic activity 
Decreased prefrontal and parietal metabolism and 
increased brainstem/cerebellar metabolism in MD-MCI; 
increased PDCP expression with worsening cognitive 
impairment 
Correlation between PDCP and memory performance, 
visuospatial function and perceptual motor speed 
Correlation between MSA, PSP and abnormal pattern 
expression of regional metabolic activity

Tang et al. (2010) 
Huang et al. (2008) 
Huang et al. (2007) 
Eckert et al. (2008)

[65] 
 [66] 
 [67] 
 [68]

Cholinergic PET 149 
143 
143 
157

Decreased thalamic cholinergic innervation in PD 
FoG more common with diminished neocortical cholinergic 
innervation and increased neocortical β-amyloid deposition 
in PD 
Increased caudate nucleus dopaminergic denervation and 
cortical cholinergic denervation in PD with more severe 
cognitive impairments 
Significant slower gait speed in the low cholinergic PD 
subgroup

Muller et al. (2013) 
Bohnen et al. (2014) 
Bohnen et al. (2015) 
Bohnen et al. (2013)

[69] 
 [70] 
 [71] 
 [72]

Select candidate imaging markers were prioritized by the authors for inclusion in this table. This list is incomplete due to space limitations; it does not presume to 
represent the entire literature.
ALFF: Amplitude of low frequency fluctuation; APS: Atypical parkinsonian syndrome; BOLD: Blood oxygen level dependent; DaTScan: Dopamine transporting 
imaging using [123I]β-CIT; dMRI: Diffusion magnetic resonance imaging; DNH: Dorsolateral hyperintensity; ET: Essential tremor; FA: Fractional anisotropy; 
FC: Functional connectivity; FoG: Freezing of gait; FW: Free water; iRBD: Idiopathic rapid eye movement behavior disorder; MD: Mean diffusivity; MRI: Magnetic 
resonance imaging; MSA: Multiple system atrophy; PD: Parkinson’s disease; PDCP: PD cognitive pattern; PDRP: PD-related pattern; PSC: Percent signal change; 
PSP: Progressive supranuclear palsy; SN: Substantia nigra; SPECT: Single photon emission computed tomography; SWI: Susceptibility weighted imaging.
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However, detection of a dopamine deficient state 
may be incomplete as a biomarker in PD. Lewy bodies 
in PD impact not only dopamine neurons but also sero-
toninergic, noradrenergic and cholinergic neurons [55], 
and thus we need imaging biomarker(s) to capture 
these extranigrostriatal pathologies. Nigrostriatal ter-
minal loss occurs also in PD mimics such as PSP, MSA 
and other disorders. The only FDA-approved technique 
for assisting in the diagnosis of PD is dopamine trans-
porter labeling using [123I] ioflupane (DaTSCAN). 
Although DaTSCAN is easier to use and less expensive 
than many PET methods, SPECT is an intrinsically 
noisy imaging modality and DAT-SPECT may add lit-
tle to clinical evaluation [76] PET and SPECT methods 
may be prone to functional modulation by symptom-
atic anti-PD treatment. Neither can assess nor quantify 
both nigrostriatal and extranigrostriatal pathological/
structural changes associated with PD. This limits the 
ability of DaTSCAN to differentiate PD from other 
types of parkinsonism such as PSP [77], although it can 
differentiate PD from Essential Tremor [78].

One promising approach to developing an imag-
ing biomarker would be to focus on network activity 
and integration using resting state fMRI (functional 
MRI). Changes in the default mode network have 
been defined in association with specific deficits [79], 
and further research is warranted.

Genomic & transcriptomic biomarkers
Genomic and transcriptomic biomarkers is a category 
that is very broad, encompassing genetics-inspired 
biomarkers particularly those with potential rel-
evance to clinical trials and practice. Much progress 
has been made over the last decade in elucidating the 
genetic architecture of PD, including more than two 
dozen familial genes and 24 confirmed susceptibil-
ity loci from GWAS studies [80]. These findings pro-
vide clues into the susceptibility to developing future 
PD in unaffected individuals. The genetic variation 
underlying the clinical phenotypes in patients who 
already have PD, however, has only very recently 

begun to be addressed. GBA mutations, particularly 
those linked to severe neuropathic Gaucher’s disease, 
have emerged as the first unequivocally and longitu-
dinally-replicated progression variants for PD [81,82]. 
GBA mutations exert a powerful effect on cognitive 
decline in PD [81,82]. Targeting PD patients carrying 
a neuropathic GBA mutation should reduce sample 
size requirements for proof-of-concept trials focused 
on cognitive outcomes [81]. Moreover, α-synuclein 
(SNCA) copy number and some missense variants 
are associated with a fulminant clinical pheno-
type [82]. Conversely, some LRRK2 mutations may 
correlate with milder disease phenotypes [83]. How-
ever, further longitudinal studies are needed. Other 
progression loci have been nominated but remain 
controversial and need further replication. The 
APOE e4 allele, a known risk factor for Alzheimer’s 
disease, has been correlated with cognitive decline 
in PD, possibly because of co-morbid amyloidopathy 
in some subjects [84] but not in others [40]. The tau 
gene (MAPT ) may also confer a risk for dementia 
in PD [85], but there is controversy [38]. To clarify 
the genetic architecture of disease progression in PD 
at genome-scale, large longitudinal or prospective 
efforts are needed such as that by the International 
Genetics of Parkinson Progression Consortium [81].

GWAS approaches are useful for identifying genetic 
regions that confer common risk [86,87]. Exome sequenc-
ing greatly extends the power of genetic analysis of rare 
variants with moderate or large effect sizes [88,89].

In addition to DNA markers, RNA markers also 
show promise for the diagnosis of PD. Expression 
of several RNA transcripts has been reported to be 
dysregulated in PD. SNCA transcript abundance in 
blood was associated with early stage and imaging-
supported de novo PD in three independent cohorts, 
including HBS and PPMI [90]. Surprisingly, SNCA 
mRNA levels, particularly the SNCA transcripts 
with long 3´UTR that might target SNCA to mito-
chondria [91], were reduced in patients with PD. 
Some of the transcripts associated with PD in mul-

Imaging Total n Direction Study (year) Ref.

SWI MRI 68 
161 
210

R2* increased in SN of PD 
Loss of DNH in iRBD patients, similar to patients with PD 
88.8% sensitive and 83.6% specific for identifying 
parkinsonism, concordance to DatScan 86.2%

Du et al. (2012) 
De Marzi et al. (2016) 
Bae et al. (2016)

[73] 
 [74] 
 [75]

Select candidate imaging markers were prioritized by the authors for inclusion in this table. This list is incomplete due to space limitations; it does not presume to 
represent the entire literature.
ALFF: Amplitude of low frequency fluctuation; APS: Atypical parkinsonian syndrome; BOLD: Blood oxygen level dependent; DaTScan: Dopamine transporting 
imaging using [123I]β-CIT; dMRI: Diffusion magnetic resonance imaging; DNH: Dorsolateral hyperintensity; ET: Essential tremor; FA: Fractional anisotropy; 
FC: Functional connectivity; FoG: Freezing of gait; FW: Free water; iRBD: Idiopathic rapid eye movement behavior disorder; MD: Mean diffusivity; MRI: Magnetic 
resonance imaging; MSA: Multiple system atrophy; PD: Parkinson’s disease; PDCP: PD cognitive pattern; PDRP: PD-related pattern; PSC: Percent signal change; 
PSP: Progressive supranuclear palsy; SN: Substantia nigra; SPECT: Single photon emission computed tomography; SWI: Susceptibility weighted imaging.

Table 5. Most promising imaging biomarkers (cont.).



www.futuremedicine.com 463future science group

Parkinson’s disease biomarkers: perspective from the NINDS Parkinson’s Disease Biomarkers Program    Perspective

Table 6. Table of candidate blood transcriptional markers possibly associated with Parkinson’s disease.

Transcript Cohorts/country Total n† Direction‡ Study (year) Ref.

SNCA (including long 
3’UTR-SNCA) 

HBS 
PPMI 
PROBE 
Portugal 
Sweden§ 
USA

405 
340 
120 
67 
154 
105¶

Reduced in early-stage and de novo 
PD 
Reduced in de novo PD 
Reduced in PD 
Reduced in fast progressing PD vs 
slow progressing PD 
Associated with PD 
Reduced in PD¶

Locascio et al. (2015) 
Locascio et al. (2015) 
Locascio et al. (2015) 
Pinho et al. (2016) 
Karlsson et al. (2013) 
Shehadeh et al. (2010)

[92] 
 [92] 
 [92] 
 [93] 
 [94] 
 [95]

COPZ1 PROBE 
HBS 
PPMI

124 
96 
200

Increased in PD 
Increased in PD 
Increased in de novo PD

Potashkin et al. (2012) 
Santiago et al. (2013) 
Santiago & Potaskin, (2015)

[96] 
 [97] 
 [98]

ALDH1A1 Germany 
EU 
Italy

153 
185 
24

Associated with PD§ 
Reduced in PD 
Reduced in de novo PD

Grunblatt et al. (2010) 
Molochnikov et al. (2012) 
Calligaris et al. (2015)

[99] 
 [100] 
 [101]

LRPPRC USA 
Sweden

48 
154

Reduced in early and de novo PD 
Associated with PD§

Scherzer et al. (2007) 
Karlsson et al. (2013)

[102] 
 [94]

BCL2 USA 
USA 
Sweden

48 
28 
154

Reduced in early and de novo PD 
Reduced in PD 
Associated with PD§

Scherzer et al. (2007) 
Shehadeh et al. (2010) 
Karlsson et al. (2013)

[102] 
 [95] 
 [94]

BCL11B USA 
USA

28 
48

Reduced in early and de novo PD 
Reduced in PD

Scherzer et al. (2007) 
Shehadeh et al. (2010)

[102] 
 [95]

APP PROBE 
HBS

95 
96

Increased in PD 
Increased in PD

Santiago et al. (2013) 
Santiago et al. (2013)

[97] 
 [97]

†Total n includes number of patients with PD and controls assayed.
‡Direction for transcripts significantly differentially expressed; study-specific significance criteria were used.
§Direction of change not mentioned. 
¶Select candidate transcripts, who met study-specific significance criteria with same directional change in at least two cohorts, were prioritized by the authors for 
inclusion in this table. This list is incomplete due to space limitations; it does not presume to represent the entire literature.
This is a reanalysis of the Scherzer, PNAS (2007) [102] microarray dataset performed by Shehadeh, PLoS ONE (2010) [95].
D: Parkinson’s disease.

tiple cohorts are presented in Table 6. In addition to 
these transcripts, other RNAs show promise as risk, 
diagnostic, stratification, prognostic and progression 
markers, but these await further large-scale replica-
tion studies (Supplementary Table 3). RNA-sequenc-
ing studies will allow researchers to delineate the full 
diversity of known and novel, coding and noncoding, 
and long and small RNAs, detectable in circulating 
blood cells as well as in cell-free body fluids such as 
plasma and CSF.

Proteomic & metabolomic biomarkers
This is a very broad scientific category where we 
consider protein markers as well as metabolomic 
markers, measured from diverse biofluids including 
plasma and CSF. As many potential markers may 
fit in this category, the focus of this discussion will 
be on markers that may be used in clinical trials or 
in practice in the foreseeable future, as this is the 
emphasis of PDBP. Because of the extensive litera-
ture in these areas, we emphasize in Table 7: mark-
ers with clear replication across cohorts; markers that 

may serve as specific indicators of target engagement 
for therapeutics in development; and potential mark-
ers worthy of replication based on large effect sizes 
in early cohorts. Specific protein markers of interest 
include SNCA as well as others investigated based 
on genetic leads or unbiased screening approaches. 
For additional discussion of promising biomarkers, 
see the review by Sharma et al. [92] as well as these 
additional manuscripts [103–105]. Metabolic markers 
include metabolome profiling, as well as assays of spe-
cific enzymatic activities such as glucocerebrosidase 
and LRRK2 kinase activity, and specific substrate 
related sphingolipids for glucocerebrosidase, such as 
gl ucosylceramide and glucosylsphingosine.

Exosomes encapsulate proteins and RNAs captured 
from the parental cell cytosol, and thus analysis of 
exosomes can reveal information distinct from that of 
secreted proteins [123]. It is unlikely that a single protein 
may be an adequate marker and as such multiplexing of 
protein changes may be the most promising approach. 
Adding to the complexity of this, post-translational 
modifications are likely to also exert an influence.
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Table 7. Table of candidate protein biomarkers for Parkinson’s disease.

Marker Biofluid >100/
group

Replicated Synopsis of result Study (year) Ref.

EGF Plasma/
serum

Y Y Lower EGF predicts cognitive 
decline, but effect is modest

Chen-Plotkin et al. 
(2011) 
Pellecchia et al. (2013) 
Lim et al. (2016)

[106] 
 [107] 
 [108]

Aβ, PTau, TTau CSF Y Y Lower Aβ and higher P-tau may 
predict cognitive decline

Siderowf et al. (2010) 
Zhang et al. (2013)

[109] 
 [110]

Total ASyn CSF Y Y Lower α-synuclein predicts 
better preservation of cognitive 
function

Stewart et al. (2014) [111]

ApoA1 Plasma/
serum

Y Y Lower ApoA1 levels correlate 
with earlier age at onset and 
greater disease severity

Qiang et al. (2013) 
Swanson et al. (2015)

[112] 
 [113]

Vit D Plasma/
serum

Y Y More Vit D insufficiency in PD 
vs controls 
Lower Vit D correlates with 
increased risk of developing PD

Evatt et al. (2008) 
Knekt et al. (2010) 
Ding et al. (2013)

[114] 
 [115] 
 [116]

Urate Plasma/
serum

Y Y Higher urate possibly 
protective, especially in men. 
In trials

Schwarzschild et al. 
(2008) 
Ascherio et al. (2009)

[117] 
 [118]

Panel of 21 proteins Serum Y N 21-protein panel differentiates 
PD vs AD vs control. High 
accuracy

O’Bryant et al. (2014) [119]

Panel of 7 proteins (ASyn, 
DJ1, PTau, TTau, Aβ, 
Flt3Ligand, fractalkine)

CSF N N PD vs control sens 92%/spec 
60% 
PD vs MSA sens 99%/spec 90% 
PD vs AD sens 92%/spec 84%

Shi et al. (2011) [120]

Panel of 6 proteins/
peptides (SPP1, LRP1, 
CSF1R, EPH4, TIMP1, 
APLP1)

CSF N N AUC 0.85 differentiating PD vs 
controls

Shi et al. (2015) [121]

AD-derived markers (CSF 
Aβ, PTau, TTau, MRI, 
APOE genotype)

Multimodal N N AUC 0.87 differentiating PD 
with normal cognition vs PD 
with dementia

Berlyand et al. (2016) [122]

Shaded lines indicate candidates tested in larger samples with replication (results are more certain). Other markers, for which results are less certain, are included if 
the reported effect size is large. List represents markers with high certainty or potentially high effect sizes developed by PDBP investigators; it does not presume to 
represent the entire literature.
CSF: Cerebrospinal fluid.

Recommendations for the future
The PDBP Consortium has proposed several recom-
mendations for the field of PD Biomarkers based on 
the review of the activities of the field as summarized 
above.

Harmonization
We recommend continued harmonization of clinical 
and laboratory data and biospecimen collection. The 
PDBP DMR has been created and provides essential 
infrastructure to the project to allow harmonization 
to continue. The clinical measures are standardized 

via the use of shared assessments and clinical data ele-
ments across studies in the DMR. Additional harmo-
nization efforts have been essential in PDBP in terms 
of standardized operating procedures for the collection 
and storage of biospecimens. The standard operating 
procedures can be found online [124]. The BioSEND 
Repository houses not only PDBP and BioFIND sam-
ples, but also the PPMI samples, which will facilitate 
across all PD-based biomarker initiatives standardized 
collection, handling and request for access practices as 
noted above [22]. Additional challenges with harmoni-
zation include the identification of the same biomarker 
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with different technologies or methodologies. Again, 
standardized operating procedures can assist with this 
challenge as can the process of identifying the best and 
most widely reproducible methodology.

Replication
We also recommend continued replication. Replica-
tion of results, as noted above, is essential for mov-
ing biomarkers projects forward toward clinical trial 
and practice usefulness. Toward this goal, the PDBP 
has released a Funding Opportunity Announcement 
(FOA) in the past to allow for replication of discover-
ies using the PDBP samples and data collection; future 
opportunities are anticipated [125]. To date, seven repli-
cation projects have been funded under PDBP mecha-
nisms, and others additionally have been approved via 
the PD BRAC. One of these projects has led to a pub-
lication in which PDBP has been used as a replication 
sample [19].

Publication of negative results
We recommend a systematic method for reporting 
and collating negative results. The phenomenon of 
bias toward positive results in the literature has been 
noted [126] and it arguably presents a particularly sig-
nificant obstacle toward biomarkers replication/valida-
tion. Negative results, especially from replication/vali-
dation studies are essential to inform the biomarkers 
process. Some journals publish and encourage nega-
tive results (such as PLoS ONE [127] and eNeuro [128]), 
and we urge the use of these forums for dissemination 
of negative and of failure to replicate studies in these 
and other journals. Ideally, both positive and negative 
studies could be collated and managed in a searchable 
resource. A data management solution, which does not 
yet exist but can be envisioned, where findings could 
be surveyed, would be an extremely useful tool to 
b iomarkers researchers.

Use of de novo cohorts for discovery efforts & 
longitudinal follow-up of well-characterized 
cohorts
There are two important cohorts that are necessary 
to identify biomarkers. First, creation of a cohort of 
newly diagnosed individuals for discovery of biomark-
ers would add to the current biomarker landscape. Sec-
ond, we should continue to follow-up existing cohorts 
to determine their clinical outcomes.

The value of large, pragmatic trials is increasingly 
being recognized [2]. The NINDS PDBP was designed 
to reflect the real-life clinical situation in its recruit-
ment, inclusion/exclusion criteria and assessment 
goals [10]. As a result, PDBP subjects are typically on 
symptomatic treatment. However, the importance of 

the use of de novo, or newly diagnosed, cohorts for dis-
covery remains an unmet need. There are challenges 
to collecting and studying de novo PD patients that are 
both ethical as well as sample-size related. PPMI has 
successfully recruited and followed over 400 de novo 
subjects with clinical PD. However, to our knowledge, 
these samples and data are approved for validation and 
qualification use. Expanding the scope of this and 
other cohorts, such as the DeNoPa cohort [44] and other 
international PD cohorts [129] to support d iscovery 
b iomarker research would be a boon to the field.

The original PDBP FOA was designed for three or 
more years of follow-up for each study. Considering the 
long clinical course and relatively slow rate of decline 
in PD, longitudinal follow-up will inform hypotheses 
tested and data collected on the PDBP cohort. Chal-
lenges in accomplishing this include the cost for long-
term follow-up, especially for individuals where no inter-
vention nor hypothesis testing is occurring. Strategies 
for overcoming this obstacle include novel approaches to 
collecting meaningful longitudinal data in a cost-effec-
tive manner such as the use of phone survey(s), wearable 
technology approaches and virtual care visits.

There are validated phone surveys for use in PD [130]. 
These could be utilized for periodic follow-up, alone 
or in combination with other tools. Wearables are 
particularly adaptable to the measure of tremor and 
movement and have the advantage of convenience and 
likely good compliance [131]. Telemedicine is used in 
clinical care, as well as in some research endeavors [132]. 
It could be possible to extend the use of telemedicine 
into a well-defined longitudinal follow-up collection 
of data on the PDBP and other cohorts toward the 
goal of enriching the outcome information of existing 
b iospecimen collections.

The need for expanding the types of biospecimens 
was also discussed. As postmortem evaluation remains 
the gold standard in PD and other neurodegenera-
tive diseases, and because several sites in the PDBP 
have an autopsy program (via the NINDS-funded 
Udall Centers of Excellence as well as at other clini-
cal sites), the committee recommended dovetailing 
brain banking with the ongoing PDBP activities. 
For instance, the Neurobiobank, which is supported 
by the National Institute of Mental Health, NINDS 
and the Eunice Kennedy Shriver National Institute 
of Child Health and Human Development, brings 
together multiple stakeholders to facilitate research 
advancement through the collection and distribution 
of human postmortem brain tissue [133]. While this 
resource is currently available to PDBP researchers, a 
formalized integration could also be pursued. Com-
mon standards for brain collection, preparation and 
neuropathologic analysis should be developed, per-
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haps along the lines used by the National Alzheimer’s 
Coordinating Center.

Additional biologicals to consider for banking 
include resources for the development of induced plu-
ripotent stem cells. Although the potential of this cell 
resource for future drug discovery efforts is significant, 
the banking of fibroblasts and peripheral blood mono-
nuclear cells should be prioritized in order to assure 
leveraging of resources. Some possible subtypes within 
the PDBP and other cohorts could include: those with 
extremes in clinical measures, patients with a change 
in clinical diagnosis, those who meet the Nalls criteria 
for risk [19] and those with genetic components as risk 
factors or causal mutations.

Additional future directions include biomarkers 
studies on cognitive impairment in Parkinsonism. 
Cognitive impairment, including dementia, is com-
monly seen in those with PD. Pathologically, PD with 
dementia (PDD) is most often associated with the pres-
ence of cortical Lewy bodies, as is the closely related 
dementia with Lewy bodies [134]. Clinically, however, 
the two disorders are not always distinct. Biologically, 
there is clear overlap and some controversy regarding 
biological differences between PDD and Dementia 
with Lewy Bodies (DLB). The PDBP is funding four 
new studies under a recently released FOA directed at 
furthering discovery science in PDD and DLB bio-
markers, including building additional clinical cohorts 
with well-characterized subjects and standardized 
c linical specimens banked via BioSEND.

Early in the disease course, it can be difficult to dif-
ferentiate PD from other conditions such as PSP and 
MSA. Even with the correct diagnosis, PD has wide 
variability in disease course, rate of progression and 
response to treatment, making an objective marker 
extremely useful [135]. Therefore, in response to this 
need, NINDS has also recently released an FOA (PAR 
16–112) toward discovery of biomarkers differentiat-
ing PD from others forms of Parkinsonism and from 
ET. This FOA also seeks to recruit subjects in discov-
ery projects toward a better understanding of ethnic, 
genetic and other subtypes and stratifications within 
the PD patient population.

Incorporation of larger datasets, such as those asso-
ciated with whole genome sequencing will require 
a movement from a server-based data repository to a 
cloud-based solution. Storage and access of data in 
the cloud will also facilitate a new approach to data 
handling where funding support is needed for cloud-
based assessments and collaborative types of studies. 
Data types generated through biomarker discovery 
platforms require the development of standard analy-
sis pipelines to enable data to be readily shared across 
studies. The inclusion of information on the pipeline 

used (providence) in the data management resource 
will facilitate the replication of biomarker results.

Determining PD biomarkers from diverse data 
sources depends critically on the use of rigorous analytic 
techniques. First, it is imperative for methods to yield not 
only accurate biomarkers but also ones that are highly 
reliable, that is, likely to attain comparable accuracy in 
other samples and across discovery, replication/valida-
tion and qualification phases. To achieve such reliability, 
reproducible methods should be used, ranging from data 
processing to software to the choice of statistical meth-
ods. Second, several of the data modalities in the PDBP 
DMR involve large-scale high throughput measures 
such as GWAS, proteomic, metabolomics and various 
neuroimaging techniques. Statistical methods applied 
should be able to cope with high-dimensional data, 
addressing issues such as multiple testing adjustments for 
error control, multicollinearity, overfitting and variable 
selection. Third, the PDBP DMR and similar resources 
provide rare opportunities for access to extremely rich 
data, potentially enabling the combination of different 
data types, which may reveal distinct manifestations of 
PD pathology. The data should be fully leveraged, when 
appropriate, to integrate across different data types and 
to conduct multimodal analyses. Suitable tools to inves-
tigate PD biomarkers using large-scale multimodal data 
are beginning to emerge [136,137], but there is an impor-
tant need to ensure that proper methods are applied and, 
in some cases, to develop new statistical techniques.

Conclusion
The PDBP has accomplished its originally stated goals 
of: creating data management infrastructure, evaluat-
ing clinical cohorts with standardized biospecimen 
collection and establishing laboratory-based and clini-
cal discovery science [7]. Through this process, it has 
become clear that the ‘basic research’ part of the pipe-
line is actually quite complex. Better description and 
evaluation of this part of the process may ultimately 
lead to more qualification of biomarkers generally and 
for PD in particular. Negative results in both discovery 
and replication are an essential component of the bio-
markers process, at every stage, but perhaps especially 
throughout the discovery (Basic Research) phase. There 
are no defined US FDA Biomarkers entry criteria. So, 
while keeping the end of FDA qualification in mind is 
important, it is a difficult target. Consideration of final 
use and application of PD biomarkers is crucial when 
planning biomarker discovery projects as well as data 
management and biospecimen collection. Key to this 
planning activity is standardization of clinical data col-
lection, and of biospecimen collection and handling.

It is unlikely that a single marker will provide suf-
ficient sensitivity and specificity for early diagnosis or 
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prognosis. A model developed by Nalls et al. [19] showed 
that olfactory function, genetic risk, family history of 
PD, age and gender were able to differentiate cases 
from controls in the PPMI sample, and this finding 
was replicated in the PDBP and other sample sets [19]. 
We believe that a combination of different biomark-
ers will be vital for the development of objective end 
points for future neuroprotection trials. In order to cre-
ate this multimodal approach to biomarkers, new anal-
ysis and data integration methods and approaches will 
be needed. Sleep and imaging measures, and to some 
extent nonmotor symptoms, assessed using adequate 
scales, may be more informative markers to quantify 
progression [44]. The PDBP will continue to study 
these markers and seek to identify markers for PDD 
and other causes of parkinsonism and dementia while 
also supporting the fundamental need for r eplication 
of discoveries in PD biomarker research.
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Executive summary

Potential role of biomarkers
•	 Biomarkers are needed to improve the diagnosis and treatment of Parkinson’s disease (PD).
•	 To be approved for use in clinical practice in the United States, biomarkers must be replicated, validated and 

then qualified through the US FDA.
Parkinson’s Disease Biomarker Program’s achievements
•	 The National Institute of Neurological Disorders and Stroke Parkinson’s Disease Biomarker Program (PDBP) has 

established a central data repository for all PD biomarker research and a central biorepository for blood and 
cerebrospinal fluid samples.

Overview of promising biomarkers
•	 While there are promising clinical, imaging, metabolomic, proteomic and genomic markers identified by the 

PDBP and other cohorts, no PD biomarker has been qualified by the FDA.
Recommendations for the future
•	 Biomarker identification could be improved through continued harmonization of clinical assessments and 

biosample ascertainment. Use of the PDBP Data Management Resource and the PDBP standard operating 
procedures can facilitate this goal.

•	 Research laboratories and medical journal publishers should place greater emphasis on the replication of 
promising results and publication of negative findings.

•	 Use of cohorts of individuals that are newly diagnosed as well as continued longitudinal follow-up of existing 
well-characterized cohorts are integral to biomarker development.
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